Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38393026

RESUMO

Chondrosia reniformis is a collagen-rich marine sponge that is considered a sustainable and viable option for producing an alternative to mammalian-origin collagens. However, there is a lack of knowledge regarding the properties of collagen isolated from different sponge parts, namely the outer region, or cortex, (ectosome) and the inner region (choanosome), and how it affects the development of biomaterials. In this study, a brief histological analysis focusing on C. reniformis collagen spatial distribution and a comprehensive comparative analysis between collagen isolated from ectosome and choanosome are presented. The isolated collagen characterization was based on isolation yield, Fourier-transformed infrared spectroscopy (FTIR), circular dichroism (CD), SDS-PAGE, dot blot, and amino acid composition, as well as their cytocompatibility envisaging the development of future biomedical applications. An isolation yield of approximately 20% was similar for both sponge parts, as well as the FTIR, CD, and SDS-PAGE profiles, which demonstrated that both isolated collagens presented a high purity degree and preserved their triple helix and fibrillar conformation. Ectosome collagen had a higher OHpro content and possessed collagen type I and IV, while the choanosome was predominately constituted by collagen type IV. In vitro cytotoxicity assays using the L929 fibroblast cell line displayed a significant cytotoxic effect of choanosome collagen at 2 mg/mL, while ectosome collagen enhanced cell metabolism and proliferation, thus indicating the latter as being more suitable for the development of biomaterials. This research represents a unique comparative study of C. reniformis body parts, serving as a support for further establishing this marine sponge as a promising alternative collagen source for the future development of biomedical applications.


Assuntos
Micropartículas Derivadas de Células , Poríferos , Animais , Micropartículas Derivadas de Células/metabolismo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Poríferos/metabolismo , Colágeno/química , Colágeno Tipo I/metabolismo , Mamíferos/metabolismo
2.
Mar Drugs ; 20(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35447892

RESUMO

Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010-2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.


Assuntos
Produtos Biológicos , Animais , Organismos Aquáticos/metabolismo , Materiais Biocompatíveis/metabolismo , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Equinodermos , Invertebrados/metabolismo , Biologia Marinha
3.
Biomacromolecules ; 22(5): 1815-1834, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33835787

RESUMO

Marine biodiversity is expressed through the huge variety of vertebrate and invertebrate species inhabiting intertidal to deep-sea environments. The extraordinary variety of "forms and functions" exhibited by marine animals suggests they are a promising source of bioactive molecules and provides potential inspiration for different biomimetic approaches. This diversity is familiar to biologists and has led to intensive investigation of metabolites, polysaccharides, and other compounds. However, marine collagens are less well-known. This review will provide detailed insight into the diversity of collagens present in marine species in terms of their genetics, structure, properties, and physiology. In the last part of the review the focus will be on the most common marine collagen sources and on the latest advances in the development of innovative materials exploiting, or inspired by, marine collagens.


Assuntos
Colágeno , Polissacarídeos , Animais
4.
Mar Environ Res ; 150: 104757, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31306868

RESUMO

Sympatry can lead to higher competition under climate change and other environmental pressures, including in South Georgia, Antarctica, where the two most common octopod species, Adelieledone polymorpha and Pareledone turqueti, occur side by side. Since cephalopods are typically elusive animals, the ecology of both species is poorly known. As beaks of cephalopods are recurrently found in top predator's stomachs, we studied the feeding ecology of both octopods through the evaluation of niche overlapping and specific beak adaptations that both species present. A multidisciplinary approach combining carbon (δ13C) and nitrogen (δ15N) stable isotope signatures, mercury (Hg) analysis and biomaterials' engineering techniques was applied to investigate the beaks. An isotopic niche overlap of 95.6% was recorded for the juvenile stages of both octopod species, dropping to 19.2% for the adult stages. Both A. polymorpha and P. turqueti inhabit benthic ecosystems around South Georgia throughout their lifecycles (δ13C: -19.21 ±â€¯1.87‰, mean ±â€¯SD for both species) but explore trophic niches partially different during adult life stages (δ15N: 7.01 ±â€¯0.40‰, in A. polymorpha, and 7.84 ±â€¯0.65‰, in P. turqueti). The beaks of A. polymorpha are less dense and significantly less stiff than in P. turqueti. Beaks showed lower mercury concentration relative to muscle (A. polymorpha - beaks: 0.052 ±â€¯0.009  µg g-1, muscle: 0.322 ±â€¯0.088  µg g-1; P. turqueti - beaks: 0.038 ±â€¯0.009  µg g-1; muscle: 0.434 ±â€¯0.128  µg g-1). Overall, both octopods exhibit similar habitats but different trophic niches, related to morphology/function of beaks. The high Hg concentrations in both octopods can have negative consequences on their top predators and may increase under the present climate change context.


Assuntos
Bico , Mudança Climática , Cadeia Alimentar , Mercúrio , Animais , Regiões Antárticas , Bico/química , Isótopos de Carbono , Dieta , Ecossistema , Mercúrio/análise , Isótopos de Nitrogênio , Simpatria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...